

Geometric realisation of Connes spectral triples for [algebras with](#page-13-0) central bases

Geometric realisation of Connes spectral triples for algebras with central bases

> Evelyn Lira-Torres¹ Joint work with Prof. Shahn Majid (arXiv:2208.07821) Queen Mary University of London

> > WINGs Spring Retreat, Chesterfeld 18th April 2023

¹ Funded by CONACyT and Alberto y Dolores A[ndra](#page-0-0)[de](#page-1-0) Méxi[co](#page-1-0) $\epsilon \geq \epsilon \geq 1$ G. OQ

Outline

Geometric realisation of Connes spectral triples for [algebras with](#page-0-0) central bases

1 [Preliminaries](#page-2-0)

- **NCRG** motivation
- **NCRG** formalism
- **NCRG** formalism

2 [Spectral Triples](#page-5-0)

- **[Axiomatic formalism](#page-7-0)**
- [Comparison with Connes](#page-8-0)
- [Some results for central base](#page-10-0)s
- [Some results for central base](#page-11-0)s

KORK ERRY ABY CHANNEL

3 [Conclusions](#page-12-0)

NCRG statement for quantum gravity

Geometric realisation of Connes spectral triples for [algebras with](#page-0-0) central bases

[Preliminaries](#page-2-0)

[NCRG motivation](#page-2-0)

[Spectral](#page-5-0) Triples

- **1** We will not assume that the spacetime is continuum at the plank scale.
	- **2** Instead propose that it is more e ectively described by a noncommutative coordinate algebra.
	- **B** And in the limit classical RG is recovered.

¹E.J. Beggs and S. Majid, Quantum Riemannian Geometry, Grundlehren der mathematischen Wissenschaften, Vol. 355, Springer (2020) 809pp $2Q$

Basic NCRG formalism

Geometric realisation of Connes spectral triples for algebras with central bases

Preliminaries NCRG formalism

Triples

We work with A a unital algebra, typically a -algebra overC, in the role of `coordinate algebra'.

- **1** Di erentials are formally introduced as a bimodule¹ of 1-forms equipped with a map: $A!$ 1 obeying the Leibniz rule $d(ab) = (da)b + adb$.
- 2 Assume this extends to an exterior algebra (; d) with $d^2 = 0$ and d obeying the graded-Leibniz rule and $q = 0$.
- $\overline{\mathbf{3}}$ A quantum metric is g 2 $^{-1}$ $_{\mathsf{A}}$ $^{-1}$ and a bimodule map inverse (;) : $^{-1}$ $_{\rm A}$ $^{-1}$! A.
- 4 A bimodule connection on 1 is r : $1!$ 1×1 A 1 obeying:

KED KARD KED KED E YOUR

```
1 r (a:!) = a:r ! + da !,
2 r (!: a) = ( r ! ):a + (! da)
```
with a unique `generalised braiding' bimodule map : $1 \t A$ $1! \t 1 \t A$ $1.$

General axiomatic motivation

Geometric realisation of Connes spectral triples for [algebras with](#page-0-0) central bases

[Spectral](#page-5-0) **Triples**

In recent years, thequantum Riemannian geometry was extended to a systematic theory including the QLC and further structure as:

■ 'spinor' bimodule S equipped with a bimodule connection

- **2** A 'Cliford action' \cdot : \cdot \cdot \cdot A S ! S \cdot
- **3** Leading to a quantum-geometric Dirac operator = $\cdot \cdot \cdot$ $\cdot \cdot \cdot$
- 4 And a inner product used to completes to a Hilbert Space.

KORK ERREPADA ADA

Motivation for central bases

Geometric realisation of Connes spectral triples for [algebras with](#page-0-0) central bases

[Spectral](#page-5-0) **Triples**

We say a basiseⁱ is central if is a grassmann algebrae $^{\rm i}$ e $^{\rm j}$ + e $^{\rm j}$ e $^{\rm i}$ = 0. We will think in central bases ifA has trivial centre, 1 has a central basis<code>fs</code>^{ig</code> and <code>S</code> has a central basisf<code>eg</code>.}

The central bases assumtion resumes into the set of 1-forms are self adjoint. The metric translates to the matrix q_{ii} of metric coefcient in the basis being hermitian. If is the flip map then the -preserving condition or translates to the Christofel symbols in the basis being real.

KORK ERRY ABY CHANNEL

Geometric [realisation of](#page-0-0) Connes spectral

Some results and examples

Geometric realisation of Connes spectral triples for algebras with central bases

Preliminaries

Triples

Some results for central bases

Theorem

Up to a phase in the 2D spinor bundle casecan be obtained with $r > 0$ and $z \ge C$ as either:

(1):
$$
J = \begin{array}{cc} Z & I \\ \frac{j}{z} & Z \end{array}
$$
; (2): $J = \begin{array}{cc} 1 & \frac{1}{jzj^{2}}Z \\ Z & \frac{Z}{Z} \end{array}$

or its transpose. The $=$ 1 case of (2) needs θ 0 and up to a

KORK ERRY ABY CHANNEL

Some results and examples

Geometric realisation of Connes spectral triples for algebras with central bases

Noncommutative Torus

the only geometrically realised Dirac operator for the standard Euclidean metric and a WQLC are

 $D($ e $) = ($ $@$ sⁱ $)$. e + d_i sⁱ. e = ⁱ $(($ $@$ + d_i $)$ $)$ e : (1) . With Hilbert space, the state $u^mv^n = m_{0.0} n_{0.0}$ R

KORK ERRY ABY CHANNEL

Preliminaries

Triples

Some results for central bases

